

<Brief Note>

Autolysins involved in conformation-dependent fibronectin binding to dry-fixed *Clostridium perfringens*

Riyo Aono^{1,2}, Kanako Watanabe-Okabe³, Yasuo Hitsumoto², Seiichi Katayama² and Nozomu Matsunaga^{2,*}

Summary The pathogen *Clostridium perfringens* exploits fibronectin (Fn) to mediate adhesion to collagen. Our previous study reported that Fn under low ionic strength (l-Fn) bound significantly to dry-fixed *C. perfringens* cells compared with Fn under high ionic strength (h-Fn), and that *C. perfringens* autolysin (Acp) bound to Fn under moderate ionic strength (m-Fn). Our previous study and this study revealed that m-Fn bound to recombinant Acp C-terminal catalytic domain (rAcpCD) and to rAcpCD plus eight cell wall-binding repeats (rAcpCWB3-10+CD) but not to recombinant six cell wall-binding repeats. l-Fn binding to rAcpCWB3-10+CD exhibited saturable binding and reached a plateau at a low concentration. That of m-Fn exhibited linear, unsaturated binding across all concentration tests. That of h-Fn exhibited an attenuated concentration dependency with reduced slope. Moreover, the binding pattern of Fn to dry-fixed *C. perfringens* cells was also similar. However, all three Fn showed saturable binding to rAcpCD and reached a plateau at a low concentration. These results pointed to a possibility that the binding of Fn to dry-fixed *C. perfringens* cells involves AcpCD + cell wall-binding repeats.

Key words: Fibronectin, *Clostridium perfringens*, Fibronectin-binding protein, Autolysin

Introduction

Clostridium perfringens is an anaerobic gram-positive spore-forming bacterium that causes gas gangrene¹. The virulence of *C. perfringens* is associated with its ability to adhere to injured tissue and produce various toxins¹. We previously reported that *C. perfringens* cells adhered to type II collagen, type III collagen, and gelatin only when they were prebound with fibronectin (Fn), but not to collagen

and gelatin alone². Therefore, adhesion of *C. perfringens* cells to host connective tissue involves Fn.

Fn, found in blood and on cell surfaces, plays a key role in several cellular processes, including wound healing, tissue structure formation, and cell migration. Fn is a 230-270-kDa glycoprotein, typically existing as a dimer and covalently linked by a pair of disulfide bonds at the C-terminus. The monomer polypeptide of Fn comprises 12 Type I, 2 Type II, and 15-17 Type III modules. Fn can adopt several different configurations ranging from

¹Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 28-1 Hara Mure-cho, Takamatsu city, Kagawa 761-0123, Japan.

²Department of Medical Technology, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama city, Okayama 700-0005, Japan.

³Department of Medical Technology, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki-shi, Okayama, 701-0193, Japan.

*Corresponding author: Nozomu Matsunaga, Department of Medical Technology, Faculty of Life Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama city, Okayama 700-0005, Japan.

Tel: +81-86-256-9418

Email: matsunaga@ous.ac.jp

Received for Publication: September 16, 2025

Accepted for Publication: November 25, 2025

compact to extended conformations in solution. Factors such as changes in pH, high ionic strength, or the presence of glycerol induce Fn to adopt an extended conformation³⁻⁵. In contrast, Fn adopts a compact conformation under low-ionic strength conditions^{4,5}.

Fn acts as a ligand for several receptors and hence it is a common target for several bacteria⁶. Many bacteria express Fn-binding proteins (Fbps) that promote colonization and host infection via adhesion to Fn^{6,7}. In our previous report, we identified Acp (CPE1231), a peptidoglycan hydrolase required for cell division in *C. perfringens*, as an Fn binding protein⁸.

Moreover, we revealed that Fn under low ionic strength conditions bound significantly more strongly to dry-fixed *C. perfringens* HN13 cells (strain 13 Δ galK Δ galT)⁹ than Fn under high ionic strength conditions¹⁰, suggesting that compared with the extended conformation (extended Fn), the compact conformation of Fn (compact Fn) preferentially binds to dry-fixed *C. perfringens* HN13 cells.

Recognition of the *C. perfringens* cell wall by Acp, which degrades peptidoglycan, is essential for cell division¹¹. The Acp molecule comprises three regions, including a signal peptide, 10 tandemly repeated bacterial Src homology, domains (cell wall-binding repeats [CWBRs]) functioning as the cell wall-binding domain, and a catalytic domain (AcpCD) belonging to the glycoside hydrolase family 73 with glucosaminidase activity (Fig. 1)¹¹.

Our previous study using ligand blotting assay demonstrated that Fn under moderate ionic strength bound to recombinant AcpCD (rAcpCD) and to recombinant AcpCWB3-10+CD (rAcpCWB3-10+CD) (Fig. 1), which contains eight CWBRs and an AcpCD, but not to recombinant AcpCWB1-6 (rAcpCWB1-6) (Fig. 1), which contains six CWBRs⁸.

To date, it remains unclear whether Acp recognizes compact Fn and/or extended Fn. In this study, we investigated the binding of various Fn conformations to rAcpCD, rAcpCWB3-10+CD, and dry-fixed *C. perfringens* HN13 cells.

Materials and methods

Bacterial strains and growth conditions

C. perfringens HN13⁹ cells were derived from the wild-type strain 13¹², which was isolated from soil. The *C. perfringens* HN13 cells used for all experiments were cultured in Gifu anaerobic medium (GAM; Nissui Co., Tokyo, Japan) broth under anaerobic conditions using an AnaeroPack system (Mitsubishi Gas, Tokyo, Japan).

Preparation of recombinant proteins and Fn

His₆-tagged rAcpCWB3-10+CD, rAcpCWB1-6, and rAcpCD were prepared as described previously^{13, 14}. Strain BL21-CodonPlus RIL (Stratagene, La Jolla, CA) harboring the plasmids pColdAcpHCWB3¹³, pColdAcpCWB1-6H¹³,

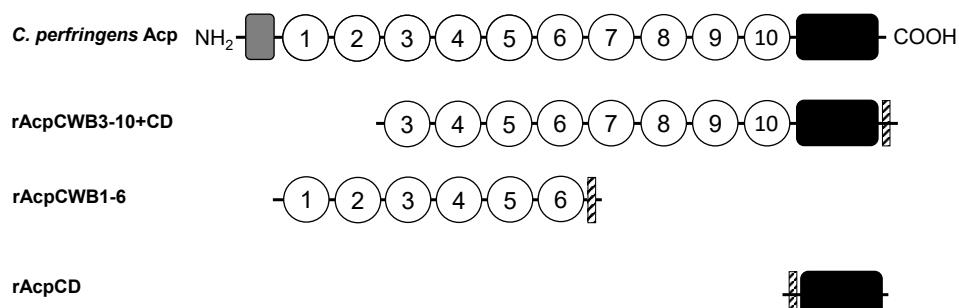


Fig. 1. Schematic of *C. perfringens* Acp and Acp fragments from this study. *C. perfringens* Acp comprises a signal peptide, 10 CWBRs, and a catalytic domain. The gray square, open circles, closed edge rectangle, and diagonal hatching represent signal peptide, CWBR, catalytic domain, and His₆-tag, respectively. rAcpCWB3-10+CD comprises eight CWBRs and a catalytic domain with a C-terminal His₆-tag, while rAcpCWB1-6 consists of six CWBRs with a C-terminal His₆-tag. rAcpCD possess six CWBRs and a catalytic domain with a N-terminal His₆-tag.

and pColdAcpCD¹⁴ was used to express C-terminal His₆-tagged 8 CWBRs with AcpCD (AcpCWB3-10+CD), C-terminal His₆-tagged 6 CWBRs (AcpCWB1-6), and the N-terminal His₆-tagged AcpCD, respectively (Fig. 1).

Fn was purified from pooled human serum using a gelatin-Sepharose column¹⁵. Elution was performed with 4 mol/L urea in 5 mmol/L veronal buffer (VB) (pH 7.4) containing 50 mmol/L NaCl (50 mmol/L NaCl VB, VBS), 140 mmol/L NaCl (140 mmol/L NaCl VB), or 250 mmol/L NaCl (250 mmol/L NaCl VB). The purified Fn was then dialyzed against the corresponding buffer. Fn preparations in 50 mmol/L NaCl VB, 140 mmol/L NaCl VB, and 250 mmol/L NaCl VB were named as low ionic strength Fn (l-Fn), moderate ionic strength Fn (m-Fn), and high ionic strength Fn (h-Fn), respectively.

Biotinylation of Fn and recombinant proteins

Fn (1 mg) and recombinant proteins (1 mg each) were incubated with 50 µL of 1.63 mg/mL biotin-amidohexanoic acid 3-sulfo-N-hydroxysuccinimide ester (Dojindo Laboratories, Kumamoto, Japan) in dimethyl sulfoxide for 1 h at room temperature. Subsequently, 0.5 mol/L Tris glycine (pH 7.5) was added to a final concentration of 0.1 mol/L, followed by incubation at room temperature for over 15 min. After incubation, the buffer surrounding biotinylated Fn was replaced with 50 mmol/L NaCl VB, 140 mmol/L NaCl VB or 250 mmol/L NaCl VB, and then, unreacted biotin was removed using a desalting column (Cytiva, Tokyo, Japan).

Preparation of dry-fixed *C. perfringens* HN13 cells

Dry-fixed *C. perfringens* HN13 cells were prepared as follow. *C. perfringens* HN13 cells were cultured in GAM broth under anaerobic conditions until reaching an optical density at 600 nm (OD₆₀₀) of 0.5 ± 0.1. The cells were then harvested, washed three times with 140 mmol/L NaCl VB, and then resuspended in the same buffer to OD₆₀₀ = 1.0. A 100-µL aliquot of the cell suspension was transferred to an EIA plate and then incubated for 48–72 h at 37 °C.

Enzyme-linked avidin-biotin complex system (ELABC)

All binding assays were performed in EIA plates (Corning, Corning, NY), with wells individually coated with purified protein or dry-fixed *C. perfringens* HN13 cells. After blocking with Bovine serum albumin (BSA; FUJIFILM Wako Pure Chemical Co., Osaka, Japan), dry-fixed *C. perfringens* HN13 cells were incubated with or without biotinylated l-Fn, m-Fn, or h-Fn (0.3–5 µg/well).

rAcpCWB3-10, rAcpCWB1-6, rAcpCD, or BSA was coated onto EIA plates. For protein-coated wells, 50 µL of protein solution at a concentration of 0.02 mg/mL in 10 mmol/L borate buffer (pH 8.5) was added to indicated wells and incubated for 30 min at room temperature. After blocking with BSA, the wells were incubated with or without biotinylated l-Fn, m-Fn, or h-Fn (0.3–5 µg/well) for 1 h at room temperature.

Bound Fn was detected as follows. Wells were washed with 20 mmol/L phosphate-buffered saline (pH 7.4) containing 0.02% (v/v) Tween 20 (PBST) and incubated with 100 µL horseradish peroxidase (HRP)-streptavidin (1:1,000 dilution; Vector Laboratories, Burlingame, CA) in 20 mmol/L Tris-buffered saline (TBS, pH 7.2) for 30 min at room temperature. After washing with PBST, color was developed by adding 100 µL of 0.91 mmol/L 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) in 0.1 mol/L citrate buffer (pH 4.1) containing 0.03% H₂O₂. The reaction was stopped using 100 µL of 0.1 mol/L citric acid containing 0.01% NaN₃. The absorbance of each well was then measured at 405 nm using a microplate reader (iMark; Bio-Rad Laboratories, Hercules, CA).

Statistical analysis

All statistical analyses were performed using GraphPad Prism version 6.00 for Windows (GraphPad Software, La Jolla, CA). Data are presented as the mean ± standard deviation (SD). Statistical comparisons were performed using one-way analysis of variance followed by a Student's *t*-test or Bonferroni multiple comparison test. A *p*-value of <0.05 was considered statistically

significant.

Results

The binding of m-Fn to recombinant Acp fragments

Using ligand blotting analysis, we previously reported that m-Fn binds to rAcpCWB3-10+CD and rAcpCD⁸. In this study, we compared the binding strength of m-Fn to rAcpCWB3-10+CD, rAcpCD, and rAcpCWB1-6 using the ELABC assay. m-Fn bound significantly to rAcpCD and rAcpCWB3-10+CD compared to BSA, but not to rAcpCWB1-6 (Fig. 2). Furthermore, m-Fn binding to rAcpCD was increased approximately 3-fold compared with that of rAcpCWB3-10+CD (Fig. 2).

The binding of Fn under various ionic strength to dry-fixed *C. perfringens* HN13 cells and recombinant Acp fragments

Fn binding affinity to bacterial cells is affected by pH¹⁶. Because the environmental conditions alter Fn conformation, the expression of Fn-binding regions changes. Our previous study reported that l-Fn binds more strongly to dry-fixed *C. perfringens* HN13 cell than h-Fn¹⁰. Thus, we evaluated the

binding affinity of l-Fn, m-Fn, and h-Fn to dry-fixed *C. perfringens* HN13 cells, rAcpCWB3-10+CD, and rAcpCD using the ELABC system. l-Fn at 0.3–5 µg/well bound 3.4–6.7 times to dry-fixed *C. perfringens* HN13 cells more strongly than BSA (Fig. 3A). The binding of m-Fn at 0.3–5 µg/well was 1.8–4.0 times higher, and that of h-Fn at 0.3–5 µg/well was 1.3–2.7 times higher (Fig. 3B and C). Particularly, l-Fn binding to dry-fixed *C. perfringens* HN13 cells reached a plateau at 1 µg/well (Fig. 3A), whereas m-Fn and h-Fn exhibited dose-dependent binding to dry-fixed *C. perfringens* HN13 cells (Fig. 3B and C). Therefore, we investigated whether l-Fn, m-Fn, and h-Fn bound to rAcpCWB3-10+CD and rAcpCD in dose-dependent manner. l-Fn at 0.3–5 µg/well bound 6.5–10.6 times to rAcpCWB3-10+CD more strongly than BSA (Fig. 3D). The binding of m-Fn at 0.3–5 µg/well was 3.0–4.9 times higher, and that of h-Fn at 0.3–5 µg/well was 2.2–3.3 times higher (Fig. 3E and F). l-Fn binding to rAcpCWB3-10+CD plateaued at 1 µg/well (Fig. 3D), while m-Fn and h-Fn showed dose-dependent binding from 0.3–5 µg/well (Fig. 3E and F). Interestingly, this binding pattern was similar to that observed for dry-fixed *C. perfringens* HN13 cells (Fig. 3 A-C). l-Fn at 0.3–5

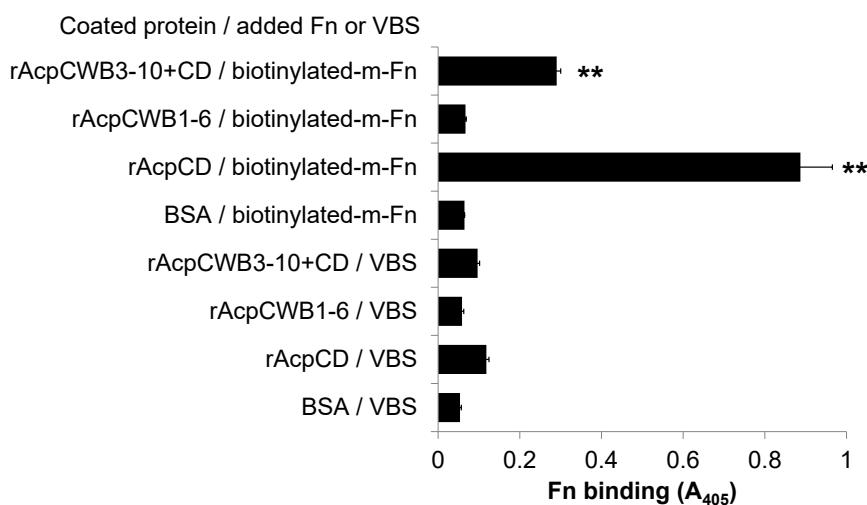


Fig. 2. m-Fn binding to various rAcp fragments. rAcpCWB3-10+CD (1 µg/well), rAcpCWB1-6 (1 µg/well), rAcpCD (1 µg/well), and BSA (1 µg/well) were coated onto microplate wells and then incubated with biotinylated m-Fn (1 µg/well). Following several washes, streptavidin-HRP was added, and bound biotinylated m-Fn was detected using a colorimetric assay. No biotinylated m-Fn was added to each control wells (veronal buffered saline: VBS). Data are shown as the mean ± SD. (n=3). **p < 0.01 versus BSA/biotinylated m-Fn. (Bonferroni pair-wise multiple-comparison test).

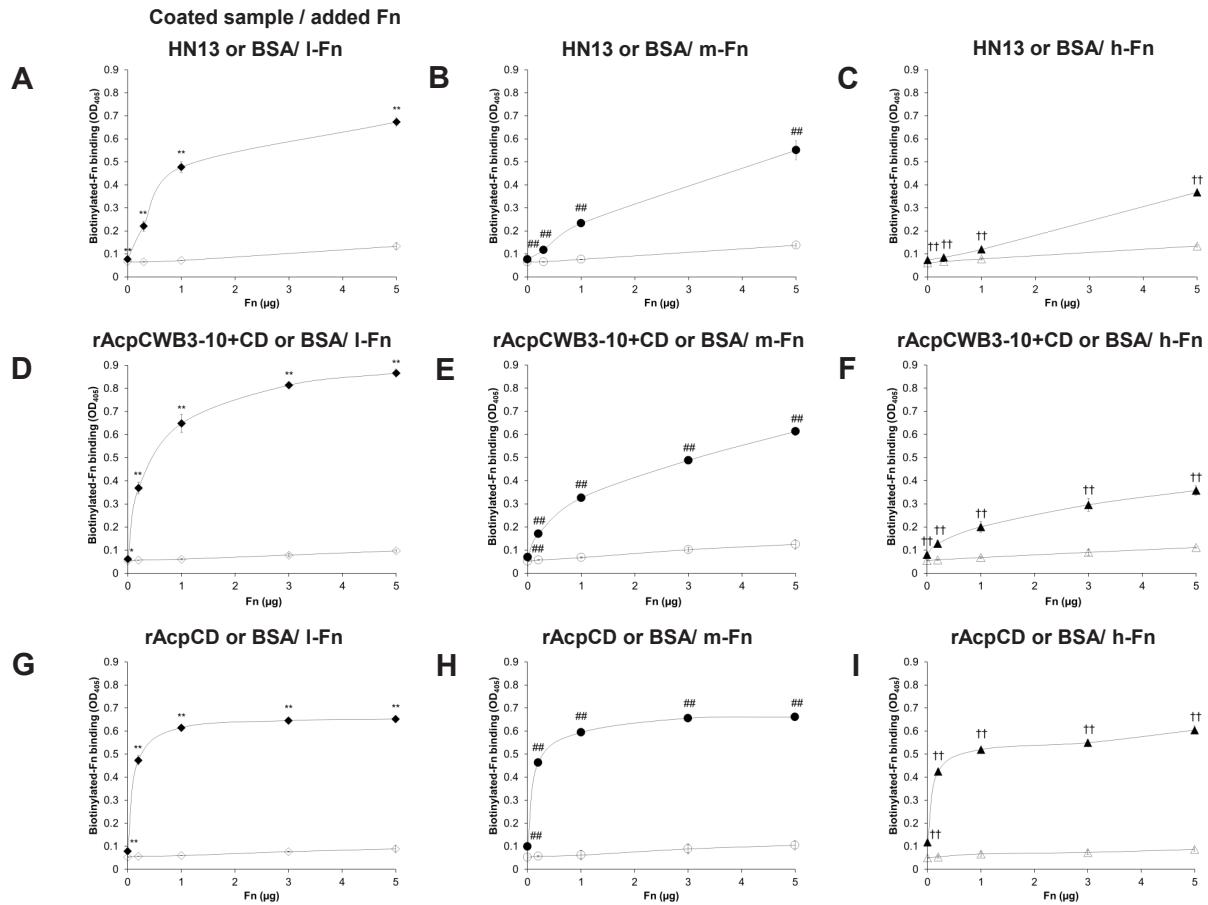


Fig. 3. Effect of ionic strength on Fn binding to dry-fixed HN13 cells or rAcp fragments. The coated dry-fixed HN13 cells, rAcpCWB3-10+CD (1 µg/well), rAcpCD (1 µg/well) and BSA (1 µg/well) were allowed to react with biotinylated l-Fn, m-Fn, or h-Fn in a dose-dependent manner. After several washes, HRP-streptavidin was added, and binding was detected using a colorimetric assay. BSA was used as a blocking reagent. Closed diamonds, closed circles, and closed triangles indicate the binding of biotinylated l-Fn (A, D, and G), m-Fn (B, E, and H), and h-Fn (C, F, and I) to coated samples (A-C: dry-fixed *C. perfringens* HN13 cells, D-F: rAcpCWB3-10+CD, G-I: rAcpCD), respectively. Open diamonds, open circles, and open triangles indicate the binding of biotinylated l-Fn (A, D, and G), m-Fn (B, E, and H), and h-Fn (C, F, and I) to coated BSA, respectively. BSA was used as a control for nonspecific binding. Data are shown as the mean \pm SD ($n = 3$). *, $p < 0.05$ and **, $p < 0.01$ versus the binding of biotinylated l-Fn to BSA at each dose point. ##, $p < 0.01$ versus the binding of biotinylated m-Fn to BSA at each dose point. ††, $p < 0.01$ versus the binding of biotinylated h-Fn to BSA at each dose point (Student's t-test).

µg/well bound 7.3–10.3 times to rAcpCD more strongly than BSA (Fig. 3G). The binding of m-Fn at 0.3–5 µg/well was 6.3–9.6 times higher, and that of h-Fn at 0.3–5 µg/well was 7.0–7.8 times higher (Fig. 3H and I). The binding pattern of Fn to rAcpCD was different from those to dry-fixed *C. perfringens* HN13 cells and to rAcpCWB3-10+CD, and the binding of all Fn (l-Fn, m-Fn, and h-Fn) to rAcpCD plateaued at 1 µg/well (Fig. 3 G-I).

Discussion

In this study, we revealed that the binding affinity of Fn under low ionic strength conditions to dry-fixed *C. perfringens* HN13 cells involves Acp.

Fn is often targeted for adhesion by several pathogenic bacteria, including *Staphylococcus aureus*, *Streptococcus pyogenes*, *Streptococcus*

dysgalactiae, *Borrelia burgdorferi*, *Staphylococcus equisimilis*, *Clostridioides difficile*, and *Listeria monocytogenes*⁶. Their adhesins for Fn, termed Fbps, are over 100 across bacterial species⁶. We previously identified three proteins, FbpC (CPE0625), FbpD (CPE0630), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (CPE1304), that can bind to Fn on the surface of *C. perfringens* cells^{13, 17}. However, Fn bound to *fbpC* and *fbpD* knockout mutants as well as to their parent strain⁸, suggesting that FbpC and FbpD are not essential for Fn binding the host wound site.

Autolysins from other pathogens, such as Aaa from *S. aureus* and AtlA from *Streptococcus mutans* have reported to be involved in Fn binding^{18, 19}. Consistently, our results showed that m-Fn significantly bound to recombinant autolysin of *C. perfringens*, rAcpCWB3-10+CD and rAcpCD, compared with BSA (Fig. 2)⁸. Moreover, Acp knockout mutants exhibited significantly decreased Fn binding, while complementation with the *acp* gene recovered binding to parental levels⁸. These findings indicate that Acp plays a central role in mediating Fn binding by *C. perfringens* cells.

SFS, *Streptococcus equi* Fbps, binds stably to compact Fn compared with extended Fn, because of its two identical subsites separated by 17 residues that simultaneously target Fn I₈₋₉ in both subunits of the Fn dimer²⁰. This observation supports our data that l-Fn, compact Fn under low ionic strength, bound more strongly to rAcpCWB3-10+CD than m-Fn and h-Fn (Fig. 3 D-F). This result is consistent with our previously observation that l-Fn showed stronger binding to dry-fixed *C. perfringens* HN13 cells compared with m-Fn and h-Fn¹⁰. Interestingly, all Fn isoforms (l-Fn, m-Fn, and h-Fn) at low concentration exhibited sufficient binding to rAcpCD (Fig. 3 G-I). Furthermore, the dose-dependent binding patterns of l-Fn, m-Fn, and h-Fn to dry-fixed *C. perfringens* HN13 cells (Fig. 3 A-C) were similar to that with rAcpCWB3-10+CD (Fig. 3 D-F). These results suggest that the recognition of Fn to dry-fixed *C. perfringens* HN13 cells involves both AcpCD and CWBRs.

In conclusion, this study demonstrated that Acp

is one of the essential Fbp for dry-fixed *C. perfringens* HN13 cells, as was case living bacterial cells. Our previous report and this study showed that the compact Fn binds more strongly to dry-fixed *C. perfringens* cell than the extended Fn¹⁰. Moreover, the findings point to a possible involvement of AcpCD+CWBRs in the binding of Fn to dry-fixed *C. perfringens* cells, suggesting that dry-fixed *C. perfringens* HN13 cells may express not only AcpCD but also partial CWBRs on their surface. However, our previous report showed that non-fixed *C. perfringens* HN13 cells bound substantially to each of l-Fn-, m-Fn-, and h-Fn-prebound gelatin¹⁰. Furthermore, extracellular matrix-binding protein from, an *S. epidermidis* Fbps, selectively binds to extended Fn in fibrillated form while ignoring compact Fn²¹, which is different from the binding pattern observed in this study. *C. perfringens* cells may express multiple Fbps, including GAPDH in addition to Acp, enabling recognition of different forms of Fn. Such versatility could suggest a sophisticated strategy for facilitating infection at different stages and in distinct host environments. Future research should address how other, unknown thus far, Fbps and GAPDH on the *C. perfringens* cell surface contribute to Fn binding and determine the specific Fn conformations they preferentially bind.

Conflicts of interest

The authors have no conflicts of interest to declare.

Acknowledgments

This work was supported by a Grant-in-aid for Scientific Research (No.25K10368) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. We are grateful to Dr. Hirofumi Nariya and Dr. Eiji Tamai for kindly providing strain HN13, and rAcp fragments, respectively.

References

- Mehdizadeh Gohari I, A Navarro M, Li J, Shrestha A, Uzal F, and A McClane B: Pathogenicity and virulence of *C. perfringens*. *Virulence*, 12:723-753, 2021.
- Hitsumoto Y, Morita N, Yamazoe R, Tagomori M, Yamasaki T, and Katayama S: Adhesive properties of *Clostridium perfringens* to extracellular matrix proteins collagens and fibronectin. *Anaerobe*, 25:67-71, 2014.
- Alexander SS Jr, Colonna G, and Edelhoch H: The structure and stability of human plasma cold-insoluble globulin. *J Biol Chem*, 254:1501-1505, 1979.
- Williams EC, Janmey PA, Ferry JD, and Mosher DF: Conformational states of fibronectin. Effects of pH, ionic strength, and collagen binding. *J Biol Chem*, 257: 14973-14978, 1982.
- Erickson HP and Carrell NA: Fibronectin in extended and compact conformations. Electron microscopy and sedimentation analysis. *J Biol Chem*, 258: 14539-14544, 1983.
- Henderson B, Nair S, Pallas J, and Williams MA: Fibronectin: A multipledomain host adhesin targeted by bacterial fibronectin-binding protein. *FEMS Microbiol Rev*, 35:147-200, 2011.
- Speziale P and Pietrocola G: The multivalent role of fibronectin-binding proteins A and B (FnBPA and FnBPB) of *Staphylococcus aureus* in host infections. *Front Microbiol*, 11:2054, 2020.
- Aono R, Emi S, Okabe-Watanabe K, Nariya H, Matsunaga N, Hitsumoto Y, and Katayama S: Autolysin as a fibronectin receptor on the cell surface of *Clostridium perfringens*. *Anaerobe*, 83:102769, 2023.
- Nariya H, Miyata S, Suzuki M, Tamai E, and Okabe A: Development and application of a method for counterselectable in-frame deletion in *Clostridium perfringens*. *Appl Environ Microbiol*, 77:1375-1382, 2011.
- Matsunaga N, Aono R, Okabe-Watanabe K, Katayama S, and Hitsumoto Y: Conformation-dependent fibronectin binding to *Clostridium perfringens*. *Int J Anal Bio-Sci*, 11: 17-24, 2023.
- Camiade E, Peltier J, Bourgeois I, Couture-Tosi E, Courtin P, Antunes A, Chapot-Chartier MP, Dupuy B, and Pons JL: Characterization of Acp, a peptidoglycan hydrolase of *Clostridium perfringens* with *N*-acetylglucosaminidase activity that is implicated in cell separation and stress-induced autolysis. *J Bacteriol*, 192:2373-2384, 2010.
- Mahony DE and Moore TI: Stable L-forms of *Clostridium perfringens* and their growth on glass surfaces. *Can J Microbiol*, 22:953-959, 1976.
- Matsunaga N, Shimizu H, Fujimoto K, Watanabe K, Yamasaki T, Hatano N, Tamai E, Katayama S, and Hitsumoto Y: Expression of glyceraldehyde-3-phosphate dehydrogenase on the surface of *Clostridium perfringens* cells. *Anaerobe*, 51: 124-130. 2018.
- Tamai E, Sekiya H, Goda E, Makihata N, Maki J, Yoshida H, and Kamitori S: Structural and biochemical characterization of the *Clostridium perfringens* autolysin catalytic domain. *FEBS Lett*, 591:231-239, 2017.
- Yamasaki T, Hitsumoto Y, Katayama S, and Nogami Y: Fibronectin-binding proteins of *Clostridium perfringens* recognize the III1-C fragment of fibronectin. *Microbiol Immunol*. 54: 221-227, 2010.
- Ito HO, Soutome S, and Inoue M: Inhibition of fibronectin binding of some bacterial cells by subtle pH increase within the physiological range. *J Microbiol Methods*, 55: 29-34. 2003.
- Katayama S, Kato S, Yamasaki A, Aitani K, Yamasaki T, Hatano N, Nariya H, and Hitsumoto Y: Novel cell wall-associated fibronectin-binding proteins of *Clostridium perfringens*. *Int J Anal Bio-Sci*, 3, 2015.
- Heilmann C, Hartleib J, Hussain MS, and Peters G: The multifunctional *Staphylococcus aureus* autolysin aaa mediates adherence to immobilized fibrinogen and fibronectin. *Infect Immun*, 73: 4793-4802, 2005.
- Jung CJ, Zheng QH, Shieh YH, Lin CS, and Chia JS: *Streptococcus mutans* autolysin AtlA is a fibronectin-binding protein and contributes to bacterial survival in the bloodstream and virulence for infective endocarditis. *Mol Microbiol*, 74:888-902, 2009.
- Ma W, Ma H, Fogerty FJ, and Mosher DF: Bivalent ligation of the collagen-binding modules of fibronectin by SFS, a non-anchored bacterial protein of *Streptococcus equi*. *J Biol Chem*, 290: 4866-4876. 2015.
- Khan N, Aslan H, Büttner H, Rohde H, Golbek TW, Roeters SJ, Woutersen S, Weidner T, and Meyer RL: The giant staphylococcal protein Embp facilitates colonization of surfaces through Velcro-like attachment to fibrillated fibronectin. *Elife*, 11: e76164, 2022.